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In this paper polymorphic lambda terms are considered, where no type 
information is provided for the variables. The aim of this work is to extend the 
algorithm of typification [1] of such terms introducing type constants and term 
constants. 
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1. Introduction. Types are used in programming languages to analyze 

programs without executing them, for purposes such as detecting programming 
errors earlier, for doing optimizations etc. In some programming languages no 
explicit type information is provided by the programmer, hence some system of 
type inference is required to recover the lost information and do compile time type 
checking. One of such type inference systems is the well known Hindley/Milner 
system [2], used in languages such as Haskell, SML, OCaml etc. Important 
property of type systems is the property of  principal typings [3, 4], which allows 
the compiler to do compositional analysis, i.e. analysis of modules in absence of 
information about other modules [3, 4]. Unfortunately Hindley/Milner system 
doesn't support the property of principal typings [3]. In this paper we consider a 
type inference system, called System E [1, 5]. In section 2 an extended version of  
System E  is presented, which adds type constants and term constants to the original 
System E.  

2. Definitions Used and Previous Results. 
2.1. Definitions used.  Let  TypeVariable   be  a  countable  set  of  type 

variables, TypeConstant  be a finite set of built-in types, TermVariable  be a 
countable set of term variables, Constant  be a countable set of constants and 
( ,ExpansionVariable ) be a countable totally ordered set of expansion variables. 

Definition 2.1. The set of types Type  is defined as follows: 
1. Typeω∈ ; 2. If TypeVariableα ∈ , then Typeα ∈ ; 3. If s TypeConstant∈ , 

then  s Type∈ ;  4.  If  e ExpansionVariable∈   and  Typeτ ∈ ,  then  e Typeτ ∈ ;       
5.  If  1 2, Typeτ τ ∈ , then 1 2( ) Typeτ τ→ ∈  and 1 2( ) Typeτ τ∩ ∈ .  

The set of expansions Expansion  is defined as follows: 
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1. Expansionω∈ ; 2. If σ  is a substitution (we will define substitutions 
later), then Expansionσ ∈ ;  3. If e ExpansionVariable∈  and E Expansion∈ , then 
eE Expansion∈ ; 4. If 1 2,E E Expansion∈ , then 1 2( )E E Expansion∩ ∈ . 

The set of terms Term  is defined as follows: 
1. If x TermVariable∈ , then x Term∈ ;  2. If c Constant∈ , then c Term∈ ; 

3. If x TermVariable∈  and M ∈Term, then ( . )x Mλ ∈Term; 4. If ( . )x Mλ ∈Term, 
then 1 2( )M M Term∈ . 

The set of constraints Constraint  is defined as follows: 
1. Constraintω∈ ; 2. If 1 2, Typeτ τ ∈ , then 1 2( ) Constraintτ τ= ∈� ;                

3. If e ExpansionVariable∈  and ConstraintΔ∈ , then e ConstraintΔ∈ ;                     
4.  If  1 2, ConstraintΔ Δ ∈ ,  then  1 2( ) ConstraintΔ ∩Δ ∈ . 

The set of skeletons Skeleton  is defined as follows: 
1.  If M Term∈ ,  then M Skeletonω ∈ ;  2. If c Constant∈   and  Typeτ ∈ , 

then  :c Skeletonτ ∈ ;   3. If x TermVariable∈  and  Typeτ ∈ , then :x Skeletonτ ∈ ; 
4. If e ExpansionVariable∈  and Q Skeleton∈ , then eQ Skeleton∈ ; 5. If x TermVariable∈  
and Q Skeleton∈ , then ( . )x Q Skeletonλ ∈ ; 6. If 1 2,Q Q Skeleton∈ , then 

1 2( )Q Q Skeleton∩ ∈ ; 7. If 1 2,Q Q Skeleton∈  and Typeτ ∈ , then :
1 2( )Q Q Skeletonτ ∈ . 

We assume that: 
1. 1 2 3 1 2 3(( ) ) ( ( ))T T T T T T∩ ∩ = ∩ ∩ ; 2. 1 2 2 1( ) ( )T T T T∩ = ∩ ; 3. ( )T Tω ∩ = ;  

4. 1 2 1 2( ) ( )e T T eT eT∩ = ∩ ;  5. ,e =eω  where 1 2 3, ,T T T Type∈  or 1 2 3, ,T T T Constraint∈  
and e ExpansionVariable∈ . 

Definition 2.2.  Let 1, , n TypeVariable,α α ∈…  1, , ,me e ExpansionVariable∈…  

1, , ,n Typeτ τ ∈…  1, , , , 0mE E Expansion n 0 m∈ ≥ ≥… . The set of pairs 

1 1{ : , , :nα τ α= =… 1 1, : , , : }n m me E e Eτ = =…  is called a substitution, if the following 
conditions are satisfied: 

1. i ji j α α≠ ⇒ ≠ , where , 1, ,i j= n… ; 2. i ji j e e ,≠ ⇒ ≠ where , 1,i j= ,m… . 
We denote by ε  the empty substitution.  
Definition 2.3. Let 1, , 0ne e ExpansionVariable, n∈ ≥… . Then 1 2 ne e e…  is 

called  E-path  and  is  denoted by eG . In case of 0n=  E-path will be denoted by ε .  
Definition 2.4. Let 1 1 2 ne =e e eG …  and 2 1 2 me =e e e′ ′ ′G … , where , 0n m ≥ . If i∃  s.t. 
min( , )1 i n m≤ ≤  and 1, ,j je =e j= i 1′ ∀ −…  and i ie e′≺  ( i ie e′; ), then 1 2e eG G  

( 1 2e eG G ). Else if n m≤  ( )n m≥ , then 1 2e eG G  ( 1 2e eG G ). 
It is easy to see that the set of E-paths with order   is a totally ordered set.  
Definition 2.5. A constraint Δ  is singular, if it was constructed without using 

operation ∩ .  
Remark  2.1.  Taking   into   account   the   definition   of   constraints,   it   is  

easy to see that each constraint has one of the following forms: 
1 1

1 1 2 1 2( ) ( )n n
n=e eτ τ τ τΔ = ∩ ∩ =

G G…� � , 1n ≥ , or =ωΔ , i.e. each constraint is an 
intersection of zero or more singular constraints.  
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Let us introduce the following notation: 1 2( ( )) =E Path e eτ τ− =
G G� .  

Definition 2.6. A constraint Δ  is solved, iff it is of the form 
1 1 1( ) ( )n n n=e eτ τ τ τΔ = ∩ ∩ =
G G…� �   n 1≥  or =ωΔ . The unsolved part of a constraint 

Δ , written ( )unsolved Δ , is the smallest part of Δ  such that ( )=unsolved ′Δ Δ ∩Δ  
and ′Δ  is solved. Consequently ′Δ  is the greatest solved part of a Δ , it is called 
solved part of a constraint Δ  and is written ( )solved Δ . So each constraint is an 
intersection of its solved and unsolved parts: ( ) ( ).=unsolved solvedΔ Δ ∩ Δ  

As we will see later, the Skeleton is an object, that contains all information 
about the type inference tree of some term. We can calculate the term 
corresponding to the Skeleton, using the following function.  

Definition 2.7.  The function term:Skeleton Term→  is defined as follows: 
1. ( ) =Mterm Mω ; 2. ( ) =:term c cτ ; 3. :( ) =term x xτ ; 4. ( ) = ( )term eQ term Q ; 

5. (( . )) = ( . ( ))term x Q x term Qλ λ ;  6. :
1 2 1 2(( ) ) = ( ( ) ( ))term Q Q term Q term Qτ ;             

7.  If 1 2( ) ( )term Q =term Q , then  1 2 1(( )) ( )term Q Q =term Q∩ ,  else  1 2(( ))term Q Q∩  
is  undefined.  

Definition 2.8. The skeleton Q  is well formed, iff ( )term Q  is defined, i.e. 
the corresponding term of skeleton exists.  

Convention 2.1. Henceforth only well formed skeletons are considered.  
The following two definitions define the application of expansions to types, 

constraints, expansions and skeletons.  
Definition 2.9. Let X Type Constraint Expansion Skeleton∈ ∪ ∪ ∪  and σ  

be a substitution. Then the application of σ  to X  is denoted by [ ]Xσ  and is 
obtained from σ  and X  by the following rules: 

1. If :α τ σ= ∈ , then [ ] =σ α τ ;  2. If :α τ σ= ∉  Typeτ∀ ∈ , then [ ] =σ α α ;  
3. [ ]s=sσ ; 4. [ ] =σ ω ω ;  5. If :e E σ= ∈ ,  then [ ] [ ]eY= E Yσ ;  6. If :e E σ= ∉  

E Expansion∀ ∈ , then [ ]eY=eYσ ; 7. 1 2 1 2[ ]( = ([ ] [ ] ))σ τ τ σ τ σ τ→ → ; 8. [ ]( )1 2X X  =σ ∩  
([ ] [ ] )1 2= X Xσ σ∩ ; 9. 1 1 1 1[ ]{ : , , : , : , , : }n n m me E e Eσ α τ α τ= = = = =… …  1 1{ : [ , , :n]α σ τ α= =…  

1 1[ ] : [ ] , ,n , e Eσ τ σ= = …  1: [ ] } { : { , , }m m ne E |σ α τα α α= ∪ = ∉ …  and : }α τ σ= ∈ ∪  

1{ : { , , }me E|e e e∪ = ∉ … , : }e E σ= ∈ ; 10. 1 2 1 2[ ]( ) = ([ ] [ ] )σ τ τ σ τ σ τ= =� � ; 11. [ ] M M=σ ω ω ;  
12. [ ][ ] ;: :x =xτ σ τσ  13. [ ][ ] ;: :c =cτ σ τσ  14. [ ]( . ) = ( [ ] );x Q x. Qσ λ λ σ  15. :

1 2[ ]( )Q Q =τσ  
:[ ]

1 2([ ] [ ] )= Q Q σ τσ σ , where 1 1, , , , , , ,n mTypeVariable e eα α α∈… …  ,e ExpansionVariable∈  
, ,c Constant s TypeConstant∈ ∈  1, , , ,mE E E Expansion∈…  1 1 2, , , , , ,n Typeτ τ τ τ τ ∈…  

, , , ,1 2Y X X Type Constraint Expansion Skeleton M Term∈ ∪ ∪ ∪ ∈ , 0,n m≥ , , ,1 2Q Q Q Skeleton∈
and  [ ]E Y  will be defined now. 

Definition 2.10. Let X Type Constraint Expansion Skeleton∈ ∪ ∪ ∪  and 
E Expansion∈ . Then the application of E  to X  is denoted by [ ]E X  and is 
obtained from E  and X  by the following rules: 

1. If E=ω , then [ ]E Y=ω , where Y Type Constraint Expansion∈ ∪ ∪ ;                 
2. If E=ω , then ( )[ ] term QE Q=ω , where Q Skeleton∈ ; 3. If E=σ , then [ ] [ ]E X= Xσ , 
where σ  is a substitution; 4. If E=eE′ , then [ ] [ ]E X=e E X′ , where 
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e ExpansionVariable∈  and E Expansion′∈ ; 5. If 1 2( )E= E E∩ , then 

1 2[ ] ([ ] [ ] )E X= E X E X∩ , where 1 2,E E Expansion∈ .  
Let us introduce the following notations: 
1. { : }e/ = e eσ σ= ; 2. If 1 2 ne=e e eG … , then 1 2 ne / =e /e / /e /σ σG … , 0n ≥ , 

where  1, , ,ne e e∈… ExpansionVariable  and σ  is a substitution. It is easy to see 
that [ ] [ ]e/ eX=e Xσ σ , [ ] [ ]e / eX=e Xσ σG G G , where 

.X Type Constraint Expansion Skeleton∈ ∪ ∪ ∪  
Lemma 2.1 (property of expansions). Let 1 2, ,E E E Expansion∈  and 

X Type∈ ∪ Constraint Expansion Skeleton∪ ∪ , then 1 2 1 2[[ ] ] [ ][ ]E E X= E E X  and 
[ ]E =Eε . 

Definition 2.11. A total function :A TermVariable Type→  is called environ-
ment, if the following set is finite: {x|x TermVariable∈  and ( ) }A x ω≠ . Environ-
ment A  can be written also as a set of pairs {( , ( )) | }A= x A x x TermVariable∈ . 

Let us introduce the following notations: 
1. [ ] = {( , ( )) |A x y A y y TermVariableτ→ ∈  and } {( , )}y x x τ≠ ∪ ; 2. A B=∩  

{( ( ( ) ( ))) | }= x, A x B x x TermVariable∩ ∈ ; 3. {( , ( )) | }eA= x eA x x TermVariable∈ ;          
4. [ ] {( [ ] ( )) | }E A= x, E A x x TermVariable∈ ;  5. {( , ) }env = x |x TermVariableω ω ∈ , 
where ,A B  are environments, E Expansion∈ , e ExpansionVariable∈ , 
x TermVariable∈  and Typeτ ∈ .  

Definition 2.12. The set CType Type⊂  is the set, satisfying the following 
conditions: 

1. If s TypeConstant∈ , then s CType∈ ; 2. If s TypeConstant∈  and 
CTypeτ ∈ , then ( )s CTypeτ→ ∈ . 

Definition 2.13. The mapping :Constant CTypeΣ →  is called a constant 
table.  

Convention 2.2. In order not to mention the constant table later, let us 
suppose that henceforth we are using some fixed constant table. 

2.2. Type inference rules.  
Definition 2.14. The quintuple of term, skeleton, environment, type and 

constraint, written ( ) : ( ) /M Q A τ Δ� , is called a judgement. The intended 
meaning of judgement is that Q  is a proof  that  M  has typing  ( )A τ , provided 
that the constraint Δ  is solved.  

Now let us introduce type inference rules, that are used to derive 
judgements. Type inference rules are the following:  

[VAR] :( ) : ( [ ] ) /x x env xτ
ω τ τ ω→�

,  [CONST] :( ) : ( ) /c c envτ
ω τ ω�

,  

where = ( )cτ Σ ,  

[E-VAR] ( ) : ( ) /
( ) : ( ) /

M Q A
M eQ eA e e

τ
τ

Δ
Δ

�
�

,            [OMEGA] 
( ) : ( ) /MM envωω ω ω�

, 

[ABS]  ( ) : ( ) /
(( . ) ( . )) : ( [ ] ( ( ) )) /

M Q A
x M x Q A x A x

τ
λ λ ω τ

Δ
→ → Δ

�
�  

, 
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[APP]  1 1 1 1 1 2 2 2 2 2
:

1 2 1 2 1 2 1 2 1 2

( ) : ( ) / and ( ) : ( ) /
(( ) ( ) ) : ( ) / ( ( ))

M Q A M Q A
M M Q Q A Aτ

τ τ
τ τ τ τ

Δ Δ
∩ Δ ∩Δ ∩ = →

� �
� �

,  

[INT]  1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2

( ) : ( ) / and ( ) : ( ) /
( ( )) : ( /

M Q A M Q A
M Q Q A A

τ τ
τ τ

Δ Δ
∩ ∩ ∩ Δ ∩Δ

� �
�  ( ))

.  

Definition 2.15. The pair ( )A τ  of an environment and a type is called 
typing of the term M , if Q Skeleton∃ ∈  and ConstraintΔ∃ ∈  s.t. judgement 
( ) : ( ) /M Q A τ Δ�  is inferable and Δ  is solved.  

Definition 2.16. The pair ( )A τ  of an environment and a type is called a 
principal typing of the term M , if ( )A τ  is a typing of M , and if ( )A τ′ ′  is a 
typing of M , then E Expansion∃ ∈  s.t.  [ ]A = E A′  and [ ]= Eτ τ′ . In other words, 
all typings of the term are obtained from principal typing through expansion.  

Lemma 2.2. If the judgement ( ) : ( ) /M Q A τ Δ�  is inferable, then the jud-
gement ( [ ] ) : ([ ] [ ] ) / [ ]M E Q E A E Eτ Δ�  is also inferable for any expansion E .  

The next lemma shows that each skeleton contains information about one 
and only one inferable judgement, i.e. represents one and only one derivation tree 
of some judgement. 

Lemma 2.3. Let Q Skeleton∈ . Then there exist one and only one term M , 
an environment A , a type τ  and a constraint Δ  s.t. the judgement 
( ) : ( ) /M Q A τ Δ�  is inferable and ( )M=term Q .  

This Lemma allows us to introduce the following functions: ( ) =env Q A , 
( ) =type Q τ , ( )constraint Q =Δ , ( ) = ( )typing Q A τ . It is easy to present algo-

rithms of calculating functions env , type , constraint  and typing . 
2.3. Initial skeleton. Type inference algorithm, that will be introduced in 

section 2.6, starts term typification by constructing initial skeleton of that term.  
Definition 2.17.  Let  us  fix  a  type  variable  0a   and  expansion  variables 

0 1 2, ,e e e   such  that  0 1 2e e e≺ ≺ .  The  function  :initial Term Skeleton→   maps 
terms to skeletons as follows: 0:( ) = ainitial x x , : ( )( ) = cinitial c c Σ , 

0(( . )) ( . ( ))initial x M = x e initial Mλ λ , 1 2 1 1(( )) = ( ( )initial M M e initial M  0:
2 2( )) ae initial M ,  

where ,x TermVariable∈  c Constant∈  and 1 2, ,M M M Term∈ . The range of 
initial  is denoted by InitialSkeleton  and elements of InitialSkeleton  are called 
initial skeletons.  

Lemma 2.4. Let P InitialSkeleton∈ . Then ( ( )) =solved constraint P ω , and 
x TermVariable∀ ∈  n 0∃ ≥  and 1 , ne , e∃

G G…  E-paths s.t. 1 0 0( )( ) nenv P x =e a e a∩ ∩
G G… , 

and no ieG  is a proper prefix of jeG , , { , , }i j 1 n∈ … .  
From the first part of Lemma 2.4 it is easy to see that all singular constraints, 

which are a part of ( )constraint P , are unsolved, where P  is an initial skeleton of 
some term. In section 2.6 we will see, that the type inference algorithm tries to 
solve some singular constraints by applying substitutions on them, and it starts 
solving the process from singular constraints, which are a part of ( )constraint P . 
Unification rules, introduced in the next section, are used to produce substitutions 
for solving singular constraints. 
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2.4. Unification rules. In this section three unification rules will be 
presented.  

Definition 2.18. The set Type Type′ ⊂  is the set of types that are constructed 
without using type constants and operation .→  

Definition 2.19. The function :EExtract Type Expansion′→  maps types 
from the set Type′  to expansions as follows: ( ) ,EExtract =ω ω  ( )EExtract =α ε , 

( ) ( ),E EExtract e =eExtractτ τ  (( )) ( ( ) ( ))E 1 2 E 1 E 2Extract = Extract Extractτ τ τ τ∩ ∩ , 
where TypeVariableα ∈ ,  e ExpansionVariable∈  and 1 2, , Typeτ τ τ ′∈ . 

Definition 2.20. The function :SExtract Type Type Substitution′× →  maps 
pairs of type from Type′ , and type to substitutions as follows: ( , )SExtract =ω τ ε′ , 

( , ) { : }SExtract =α τ α τ′ ′= , ( , ) = ( , )S SExtract e e/Extractτ τ τ τ′ ′ , 1 2(( ), )SExtract τ τ τ ′∩ =  

2 1[ ( , )] ( , )S SExtract Extractτ τ τ τ′ ′= , where ,Type e ExpansionVariableτ ′∈ ∈ , 
TypeVariableα ∈ and  1 2, , Typeτ τ τ ′∈ . 

Definition 2.21 ( βunify  rule). Let 1 0 0 0 1 2 2 0( ( ) ( ))=e e e e e aτ τ τΔ → = →
G �  be a 

singular constraint, where 0 Typeτ ′∈  and 1 2, Typeτ τ ∈ . Then the rule unifyβ  is 

applicable  to  Δ ,  and  the  result  of  this  application  is  the  following  substitu-
tion: 0 1 1 0{ : [ ] , : { : } : }2=e / a e e ,e Eσ σ τ σ′ ′ ′= = = =

G , where 0= ( )EE Extract τ′  and 

0 2( , ).S=Extractσ τ τ′  

The application of the rule unifyβ  is written as unifyβ σΔ⎯⎯⎯→ .  
Now let us explain the meaning of the rule unifyβ . Let 1 2(( . ( ))x M Mλ  be a 

subterm of some term M , where x TermVariable∈  and 1 2,M M Term∈ . The 
initial skeleton of that subterm will be 0:

1 0 1 2 2( ( . ) ) ae x e P e Pλ , where 1 1( )P=initial M  
and 2 2( )P =initial M . The part of ( ( ))constraint initial M  that corresponds the initial 
skeleton of subterm mentioned above will be 1 0 0 0 1 2 2 0( ( ) ( ))e e e e e aτ τ τ→ = →

G � , 
where 1τ  corresponds to the type of 1M  1 1( ( ))=type Pτ , 2τ  corresponds to the type 
of 2M  2 2( ( ))=type Pτ  and 0τ  corresponds to the type of x  in term 1M  

0 1( ( )( ))=env P xτ . Before applying substitution created by the rule unifyβ , the type 

0a  is associated with any free occurrence of variable x  in the term 1M . After 
applying substitution, all that 0a  type variables will be replaced with the type 2τ  
(this replacement is done by the substitution created by the function SExtract ), and 
the type of x  in term 1M  will be changed. The same type is obtained, when 
applying substitution created by the function EExtract  to the type 2τ  (it makes as 
many copies of type 2τ  as there are free occurrences of variable x  in term 1M ). It 
is easy to see that the process described above is very similar to the one step β -
reduction. Next two lemmas show the exact correspondence of the rule unifyβ  
with β -reduction.  

Lemma 2.5 (correspondence with β -reduction). Let M Term∈  and 
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( )P=initial M . If  ( ) =constraint P ′Δ ∩Δ , where Δ  is a singular constraint, to 

which the rule unifyβ  is applicable and unifyβ σΔ⎯⎯⎯→ , then M Term′∃ ∈  s.t. 
( ) [ ]constraint P = σ′ ′Δ , ( ) = [ ] ( )env P env Pσ′ , ( ) = [ ] ( )type P type Pσ′  and M Mβ ′→ ,  

where = ( )P initial M′ ′ .  
Lemma 2.6 (correspondence with β -reduction). Let ,M M Term′∈ , 

( )P=initial M  and = ( )P initial M′ ′ . If M Mβ ′→ , then ∃Δ  singular constraint s.t. 

( ) =constraint P ′Δ ∩Δ  the rule unifyβ  is applicable to Δ  and unifyβ σΔ⎯⎯⎯→ , 
( ) = [ ]constraint P σ′ ′Δ , ( )env P′ =  [ ] ( )env Pσ  and ( ) = [ ] ( )type P type Pσ′ .  

Definition 2.22 ( xunify rule). Let 1 0 2 0( ( ))=e e a e aτΔ = →
G �  be a singular 

constraint,   where   Typeτ ∈ .   Then   the   rule   xunify    is   applicable   to   Δ ,  
and the result of application is the following substitution: 

1 0 2 0 1 1 1 2 1 2{ : { : ( ), : , : }}=e / e a e a e e e e e eσ τ ε ε= = → = =
G .  

The application of the rule xunify  is written as xunify σΔ⎯⎯⎯→ .  
Now let us explain the meaning of the rule xunify . Let 1 2( )M M  be a 

subterm of some term M , where 1 2,M M Term∈ . During the work of the type 
inference algorithm the corresponding skeleton of that subterm can be 0:

1 1 2 2( ) ae Pe P , 
where 1 2,P P Skeleton∈  and 1 0( ) =type P a . The singular constraint corresponding to 
the skeleton mentioned above is 1 0 2 0( ( ))e e a e aτ= →

G � , where τ  corresponds to the 
type of 2M , and 0a  corresponds to the type of 1M  in the current stage of the work 
of type inference algorithm. After applying substitution σ  the type of 1M  will be 
replaced with 2 0( )e aτ → , and the skeleton mentioned above will have the 
following form: 0:

1 2 2( ) aPe P′ , where 1 2 0( ) ( )type P = e aτ′ → . 
Definition 2.23 ( cunify rule). Let 1 0 2 0( ( ))=e e e aτ τΔ = →

G �  be a singular const-
raint, where 0 CTypeτ ∈  and Typeτ ∈ . Then the rule cunify  is applicable to Δ : 

1. If 0=sτ  or sτ ≠   and  0aτ ≠ , where s TypeConstant∈ , then application 
of the rule cunify  fails; 

2. If 0 ( )= sτ τ ′→  and =sτ , where s TypeConstant∈  and CTypeτ ′∈ , then 
the  result  of  applying  the  rule  cunify   is 

0 1 0 1 0 1 1 1 2 1 2 2 0 2 0 1 2 1 2{ : , : { : , : , : }, : { : , : , :=e/ a e a e a e e e e e e e a e a e e e eσ τ ε ε ε′= = = = = = = = =
G

2 2 }};e e ε  
3. If 0 ( )= sτ τ ′→  and 0=aτ , where s TypeConstant∈  and CTypeτ ′∈ , then 

the  result  of  applying  the  rule  cunify   is 

0 1 0 1 0 1 1 1 2 1 2 2 0 1 2 1 2 2 2{ : , : { : , : , : }, : { : , : , : }}.=e / a e a e a e e e e e e e a s e e e e e eσ τ ε ε ε ε′= = = = = = = = =
G  

In cases 2 and 3 application of the rule cunify  is written as cunify σΔ⎯⎯⎯→ .  
Now let us explain the meaning of the rule cunify . Let 1 2( )M M  be a 

subterm of some term M , where 1 2,M M Term∈ . During the work of the type 

inference algorithm the corresponding skeleton of that subterm can be 0:
1 1 2 2( ) ae Pe P , 
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where 1 2,P P Skeleton∈  and 1 0( ) =type P CTypeτ ∈ . The singular constraint 
corresponding the skeleton mentioned above will be 1 0 2 0( ( ))e e e aτ τ= →

G � , where 
τ  corresponds to the type of 2M , and 0τ  corresponds to the type of 1M  in the 
current stage of work of the type inference algorithm. After applying substitution 
σ  the type of 1 2( )M M  will be replaced with τ ′ , and the type of 2M  will be 
replaced with s , if needed, and skeleton mentioned above will have the following 
form: :

1 2( )PP τ ′′ ′ , where 1( ) = ( )type P s τ′ ′→  and 2( ) =type P s′ . 
Next lemma shows, that the substitution created by the rule unifyβ , xunify  

or cunify  solves the corresponding singular constraint.  

Lemma 2.7. Let Δ  be a singular constraint, to which the rule yunify  is 

applicable  and  yunify σΔ⎯⎯⎯→ ,  where { }, ,y x cβ∈ . Then [ ]σ Δ  is solved. 
Let us now consider singular constraints that are a part of constraint 

corresponding to some initial skeleton. Next lemma shows, that one and only one 
unificitation rule is applicable to each of that singular constraints.  

Lemma 2.8. Let M Term∈ , ( )P=initial M  and 1( ) = nconstraint P Δ ∩ ∩Δ… , 

1n ≥ , where iΔ  is a singular constraint, 1, ,i= n… . Then one and only one rule 
from rules , xunify unifyβ  and cunify  is applicable to each iΔ , = 1, ,i n… .   

2.5. Unification algorithm. The unification algorithm tries to solve the given 
constraint that initially corresponds to some initial skeleton. It is called from the 
type inference algorithm and in fact is does the main work of type inference.  

Definition 2.24. Let 1 n= ConstraintΔ Δ ∩ ∩Δ ∈… , n 1≥ , where 1 , n,Δ Δ…  
are singular constraints and ( ) ( )i jE Path E Path− Δ ≠ − Δ , , 1, ,i j= n… . Then 
leftmost/outermost constraint of Δ , written as ( )LO Δ , is a singular constraint from 

1 , n,Δ Δ…  that has the least E-path, i.e. ( ) = kLO Δ Δ , where {1, , }k n∈ …  and 

( ) ( )k iE Path E Path− Δ − Δ≺ {1, , } \{ }i n k∀ ∈ … .  

Definition 2.25. Let 1 n= ConstraintΔ Δ ∩ ∩Δ ∈… , 1n ≥ , where 1 , n,Δ Δ…  
are singular constraints and ( ) ( )i jE Path E Path− Δ ≠ − Δ , , 1, ,i j= n… . Then 
rightmost/innermost constraint of Δ , written as ( )RI Δ , is a singular constraint 

from 1 , n,Δ Δ…  that has the greatest E-path, i.e. ( ) = kRI Δ Δ , where {1, , }k n∈ …  

and ( ) ( )i kE Path E Path− Δ − Δ≺ {1, , } \{ }i n k∀ ∈ … .  
Let us explain the meaning of ( )LO Δ  and ( )RI Δ . Looking at the type 

inference rules, we can say that a new singular constraint is added to the constraint 
part of skeleton only after applying rule [APP]. Hence each singular constraint 
corresponds to one subterm of the form 1 2( )M M , where 1 2,M M Term∈ . Let us 
mention without proving that ( )LO Δ  corresponds to the leftmost, outermost 
subterm of the form 1 2( )M M  and ( )RI Δ  corresponds to the rightmost, innermost 
subterm of the form 1 2( )M M .  
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Definition 2.26. Let 1 n= ConstraintΔ Δ ∩ ∩Δ ∈… , 1n ≥ , where 1 , n,Δ Δ…  
are singular constraints, { , 1I= i| i n≤ ≤ , and rule unifyβ  is applicable to }iΔ . Then 

( ) ii Ifilter =β ∈Δ Δ∩  (we suppose that ( ) =filterβ ωΔ   for I=∅ ).  
Algorithm of unification(Unify). 
Input: constraint Δ  such that ( ) =solved ωΔ . 
Output: either returns the substitution that solves constraint or fails, or never 

returns. 
1. If =ωΔ , then return ε .      
2. If ( )filterβ ωΔ ≠ , then ( ( )) unifyLO filter β

β σΔ ⎯⎯⎯→  and returns 
[ ( ([ ] ))]Unify unsolved σ σΔ .   

3. If the rule xunify  is applicable to ( )RI Δ , then ( ) unifyRI β σΔ ⎯⎯⎯→  and 
returns [ ( ([ ] ))]Unify unsolved σ σΔ . 

4. If the rule cunify  is applicable to ( )RI Δ  and this application doesn’t fail, 

then ( ) unifyRI β σΔ ⎯⎯⎯→  and returns [ ( ([ ] ))]Unify unsolved σ σΔ , else fail.  
Lemma 2.9 (correctness of the unification algorithm).  Let  M Term∈   and  

( ( ))=constraint initial MΔ . Then if ( ) =Unify σΔ , [ ]σ Δ  is solved.  
It is easy to see that the unification algorithm first tries to solve singular 

constraints, to which the rule unifyβ  is applicable. It means that during his work 
the unification algorithm does implicit β -reductions in initial term until reducing 
the initial term to β -normal form, which happens when the unification algorithm 
first time arrives in point 3 or ends his work at point 1.  

Lemma 2.10. Let M Term∈ , = ( )P initial M , M M NFβ β′∈ −  and 
( )=constraint PΔ . Then for input Δ  the unification algorithm does a finite number 

of recursive calles from point 2 and tries to return the following: 
2 1[ ( )][ ] [ ]mUnify σ σ σ′Δ … , where 1 , m,σ σ…  are created by the rule unifyβ  during 

the work of the algorithm  and  = ( ( ))constraint initial M′ ′Δ .  
Remark 2.2. It is very important that in point 2 the unification algorithm 

applies the rule unifyβ  to ( ( ))LO filterβ Δ . This choice ensures that in each step of 
the implicit β -reduction the unification algorithm will treat the leftmost, outermost 
β -redex. It is known that in this case β -normal form is reachable, if it exists.  

Lemma 2.11. Let M Term∈ , ( )P=initial M , ( )=constraint PΔ  and M  
hasn't a β -normal form. Then for input Δ  the unification algorithm will infinitely 
call himself recursively in point 2 and will never return.  

Now let us consider the situation, when the term has a β -normal form. In 
this case we have no singular constraint, to which the rule unifyβ  is applicable, and 

the unification algorithm tries to solve singular constraints, to which the rule xunify  
or rule cunify  is applicable. It is important that in each step of work the unification 
algorithm tries to solve the singular constraint ( )RI Δ . This choice ensures that 
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during the next recursive calls of unification algorithm the rule xunify  or the rule 

cunify  will be applicable to each singular constraint.  
Lemma 2.12. Let M Term∈ , ( )P=initial M , ( )=constraint PΔ  and M β∈ –

– NF . Then for input Δ  the unification algorithm does a finite number of recursive 
calls from point 3 or 4, and succeeds in point 1 or failed in point  4, because the 
application of the rule cunify  was failed. 

2.6. Type inference algorithm. Now let us present the type inference 
algorithm.  

Type inference algorithm(Typify). 
Input: term M .    
Output: either returns the typing of  M or fails, or never returns. 
1. ( )P=initial M . 2. ( ( ))=Unify constraint Pσ . 3. Return ([ ] ( ) [ ] ( ))env P type Pσ σ .  
T h e o r e m  2 . 1  (correctness of the Typify algorithm).   
Let M Term∈ . Then if ( ) = ( )Typify M A τ , then ( )A τ  is the typing of 

term M .  
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λ -թերմերի տիպային կոռեկտության մասին: 1 
 

Աշխատանքում դիտարկվում են պոլիմորֆ λ -թերմերը, որոնցում չկա 
ինֆորմացիա փոփոխականների տիպերի մասին: Աշխատանքի նպատակն է 
ընդլայնել այդպիսի թերմերի տիպայնացման ալգորիթմը [1] տիպերի 
հաստատունների և թերմերի հաստատունների գաղափարների ներմուծմամբ: 
 

 
О типовой корректности полиморфных λ -термов. 1 

  
В работе рассматриваются полиморфные λ -термы, в которых отсут-

ствует информация о типах переменных. Цель даной работы – расширить 
алгоритм типизации таких термов [1] введением понятий констант типов и 
констант термов. 
 


