PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2009, Ne 3, p.42-51
Informatics

ON THE TYPE CORRECTNESS OF POLYMORPHIC A-TERMS. 1

A. H. ARAKELYAN"

Chair of Programming and Information Thechnologies, YSU

In this paper polymorphic lambda terms are considered, where no type
information is provided for the variables. The aim of this work is to extend the
algorithm of typification [1] of such terms introducing type constants and term
constants.

Keywords: type, term, constraint, skeleton, expansion, typing.

1. Introduction. Types are used in programming languages to analyze
programs without executing them, for purposes such as detecting programming
errors earlier, for doing optimizations etc. In some programming languages no
explicit type information is provided by the programmer, hence some system of
type inference is required to recover the lost information and do compile time type
checking. One of such type inference systems is the well known Hindley/Milner
system [2], used in languages such as Haskell, SML, OCaml etc. Important
property of type systems is the property of principal typings [3, 4], which allows
the compiler to do compositional analysis, i.e. analysis of modules in absence of
information about other modules [3, 4]. Unfortunately Hindley/Milner system
doesn't support the property of principal typings [3]. In this paper we consider a
type inference system, called System E [1, 5]. In section 2 an extended version of
System E is presented, which adds type constants and term constants to the original
System E.

2. Definitions Used and Previous Results.

2.1. Definitions used. Let TypeVariable be a countable set of type

variables, TypeConstant be a finite set of built-in types, TermVariable be a

countable set of term variables, Constant be a countable set of constants and
(ExpansionVariable, <) be a countable totally ordered set of expansion variables.

Definition 2.1. The set of types Type is defined as follows:

1. weType; 2. If a € TypeVariable ,then a € Type; 3. If s € TypeConstant ,
then seType; 4. If ee ExpansionVariable and teType, then ereType;
5. If 7,7, € Type, then (7, > 7,) € Type and (7, N 7,) € Type.

The set of expansions Expansion is defined as follows:

* E-mail: ara_arakelyan@yahoo.com

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 3, p. 42-51. 43

l.w e Expansion ; 2. If o is a substitution (we will define substitutions
later), then o € Expansion ; 3.1f e € ExpansionVariable and E € Expansion , then
eE € Expansion ; 4. If E|,E, € Expansion , then (E, N E,) € Expansion .

The set of terms Term is defined as follows:
1. If x e TermVariable, then x € Term; 2. 1f ¢ € Constant , then c € Term ;
3. If x e TermVariable and M € Term, then (Ax.M) e Term; 4. If (Ax.M) € Term,

then (M\M,) € Term .

The set of constraints Constraint is defined as follows:

1. weConstraint; 2. If «t,r,eType, then (7, =r,)e Constraint;
3. If ee ExpansionVariable and A e Constraint, then eA e Constraint,
4. If A\,A, € Constraint, then (A, NA,) e Constraint .

The set of skeletons Skeleton is defined as follows:

1. If M eTerm, then & e Skeleton:; 2.1f ¢ e Constant and 7e Type,

then c¢* e Skeleton; 3.1f x € TermVariable and 7€ Type, then x* € Skeleton
4. If e e ExpansionVariable and Q e Skeleton, then eQ € Skeleton ; 5. If x € TermVariable
and Qe Skeleton, then (Ax.Q)e Skeleton; 6. If Q,,0, € Skeleton, then

(O, N Q,) € Skeleton ; 7. 1f Q,,0, € Skeleton and 7 € Type , then (Q,0,)" € Skeleton .

We assume that:

LGN =(N(1,NnT); 2. (ENL)=(T,nT); 3. (onT)=T;
4. eI, "T,)=(eT, nel,); 5. ew=e, where 1,,T,,T, € Type or 1,,T,,T; € Constraint
and e € ExpansionVariable .

Definition 2.2. Let a,...,a, € TypeVariable, e,,...,e, € ExpansionVariable,
7y,...,7, €Type, E,,....E, €Expansion, n=0, m=0. The set of pairs
{o =1,,....,a, =7,,¢,=E,...,e, =E, } is called a substitution, if the following
conditions are satisfied:

lLi#j=a #a;, where i,j=l,...n;2. i#j=e #e; where i,j=1,...m.

We denote by ¢ the empty substitution.

Definition 2.3. Let e,,...,e, € ExpansionVariable, n>0. Then ege,...e, is
called E-path and is denoted by €. In case of n=0 E-path will be denoted by ¢ .

Definition 2.4. Let é=ee,...e, and é,=ee,...e, , where n,m>0.1f 3i s.t.
I1<i<min(n,m) and e;=e; Vj=l,....,i—1 and e <¢ (¢ ~¢/), then ¢ =<é,
(e, =¢6,).Elseif n<m (n>m),then ¢ <é, (¢ =é,).

It is easy to see that the set of E-paths with order < is a totally ordered set.

Definition 2.5. A constraint A is singular, if it was constructed without using
operation M.

Remark 2.1. Taking into account the definition of constraints, it is
easy to see that each constraint has one of the following forms:
A=é/(z} =1))N...né,(r] =7;), n>1, or A=w, ie. each constraint is an
intersection of zero or more singular constraints.

44 Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 3, p. 42-51.

Let us introduce the following notation: E — Path(é(r, =7,))=¢€.

Definition 2.6. A constraint A is solved, iff it is of the form
A=é (r,=1)N...née,(r,=7,) n=1 or A=w. The unsolved part of a constraint
A, written unsolved(A), is the smallest part of A such that A=unsolved(A) A’

and A’ is solved. Consequently A’ is the greatest solved part of a A, it is called
solved part of a constraint A and is written solved(A). So each constraint is an

intersection of its solved and unsolved parts: A=unsolved (A) N solved (A).

As we will see later, the Skeleton is an object, that contains all information
about the type inference tree of some term. We can calculate the term
corresponding to the Skeleton, using the following function.

Definition 2.7. The function term:Skeleton — Term is defined as follows:

1. term(0™)=M ;2. term(c?)=c; 3. term(x*)=x; 4. term(eQ) =term(Q) ;

5. term((Ax.Q)) = (Ax.term(Q)) ; 6. term((Q,0,)") = (term(Q,)term(Q,));

7. If term(Q,)=term(Q,) , then term((Q, N Q,))=term(Q,), else term((Q, N Q,))

is undefined.
Definition 2.8. The skeleton Q is well formed, iff term(Q) is defined, i.e.

the corresponding term of skeleton exists.

Convention 2.1. Henceforth only well formed skeletons are considered.

The following two definitions define the application of expansions to types,
constraints, expansions and skeletons.

Definition 2.9. Let X € Type U Constraint U Expansion U Skeleton and o

be a substitution. Then the application of o to X is denoted by [o]X and is
obtained from o and X by the following rules:

1.If a=7€0, then [ola=r; 2.If a:=7r¢0c Vrelype, then [cla=c;
3. [ols=s; 4. [o]lo=w; 5.1f e=Eco, then [c|eY=[E]Y; 6.1f e=E¢o
VE € Expansion , then [cleY=eY ;7. [o](r, =1,)= (o], = [0o]r,); 8. [0](X,NX,) =
=([olX, n[clX,); 9. [oly =1,,...¢, =7,,¢ =E,,...e, =E, }= {a,=[c]7,...,a, =
=(o]lr,, ¢ =[0]E,,...., e, =[0]E, }Via=1ael,...,a,} and a=recc}uU
Ufe:=Eleg{e,,....e,},e=Eeo}; 10. [0)r, =1,) = (o], =[o]r,); 11. [cle" =0 ;
12. [o]x"=x11"; 13. [c]c"=c17""; 14. [6](Ax.0) = (Ax[c]0); 15. [61(Q,0,) =
=([610,[]0,)'°" , where &,....a,,a € BypeVariable,e,,.. .e,, ec ExpansionVariable,
c € Constant, s € TypeConstant, E,,...,E, E € Expansion, t,,...,7,,7,7,7, €l)pe,
Y, X,, X, € BpewConstraint U Expansion U Skeleton, M € Term, n,m >0, Q,0Q,,0, € Skeleton,
and [E]Y will be defined now.

Definition 2.10. Let X e Type Constraint U Expansion U Skeleton and
E € Expansion . Then the application of £ to X 1is denoted by [E]X and is
obtained from £ and X by the following rules:

1. If E=w, then [E]Y=w, where Y eTypev Constraint U Expansion;
2.1f E=w, then [E]Q=0'"? , where Q< Skeleton; 3. 1f E=c ,then [E]X=[c]X ,
where o is a substitution; 4. If E=eE', then [E]X=¢[E']X, where

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 3, p. 42-51. 45

e € ExpansionVariable and E'e Expansion; 5. If E=(E,NE,), then
[E]X=([E,]X N[E,]X), where E,,E, € Expansion .

Let us introduce the following notations:

1. e/o={e=ec}; 2. If é=ee,...e,, then é/o=e/e,/.../e,/0, n=0,
where e,...,e,,ee ExpansionVariable and o is a substitution. It is easy to see
that [e/cleX=€lo]X , [é/c]eX=¢é[c]X , where

X € Type L Constraint U Expansion U Skeleton.

Lemma 2.1 (property of expansions). Let E, E,,E < Expansion and
X € Type v Constraint U Expansion U Skeleton , then [[E|]E,]X=[E][E,]X and
[Ele=E .

Definition 2.11. A total function A :TermVariable — Type is called environ-
ment, if the following set is finite: {x|x € TermVariable and A(x)# w}. Environ-
ment A can be written also as a set of pairs 4={(x, A(x))| x € TermVariable} .

Let us introduce the following notations:
1. Ax—r7]={(y,A(»))|y € TermVariable and y# x}U{(x,7)};2. AN B=

={(x,(A(x) " B(x)))| x € TermVariable} ; 3. eA={(x,eA(x))| x € TermVariable} ;
4. [E]A={(x[E]A(x))|x € TermVariable}; 5. env,={(x,w)x € TermVariable},
where A4,B are environments, FE € Expansion, e < ExpansionVariable,
x € TermVariable and 7 € Type.

Definition 2.12. The set CType = Type is the set, satisfying the following
conditions:

1. If seTypeConstant, then seCType; 2. If seTypeConstant and
7€ CType, then (s > 1) e CType .

Definition 2.13. The mapping 2 :Constant — CType is called a constant
table.

Convention 2.2. In order not to mention the constant table later, let us
suppose that henceforth we are using some fixed constant table.

2.2. Typeinferencerules.

Definition 2.14. The quintuple of term, skeleton, environment, type and
constraint, written (M >Q):(AF7)/A, is called a judgement. The intended
meaning of judgement is that O is a proof that M has typing (A4 7), provided
that the constraint A is solved.

Now let us introduce type inference rules, that are used to derive
judgements. Type inference rules are the following:

[VAR] [CONST]

(x> x®):(env [x >7]F7)/ @ ’ (c>c):(env, Fo)l o
where 7= 2(c),
(M>0):(AF7)/ A
(M >eQ):(eder)/eA’
M>Q):(AF7)/A
(Ax. M) > (Ax. Q) : (A[x > @] F (A(x) > 7)) /A’

[E-VAR]

[OMEGA]

M > a"):(env, F o)/ o

[ABS]

46 Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 3, p. 42-51.

(M, >0):(4 F7)/ A and (M, >0,): (4, F1) /A,
(M M) > (Q0,)7): (4 N A)/ A NA, N (7 =(7, > 7)) ’
M>0):(4FFr)/Aand(M > 0,):(4, F1,)/ A,
(M>(QND)):(A4NAE(r,N))/ANA,

Definition 2.15. The pair (AF7) of an environment and a type is called
typing of the term M , if 30 € Skeleton and 34 € Constraint s.t. judgement
(M >Q):(AF7)/A is inferable and A is solved.
Definition 2.16. The pair (A7) of an environment and a type is called a

[APP]

[INT]

principal typing of the term M , if (AF 7) is a typing of M , and if (4'+7') isa
typing of M , then 3IE € Expansion s.t. A=[E]A and '=[E]r . In other words,

all typings of the term are obtained from principal typing through expansion.
Lemma 2.2. If the judgement (M > Q):(AF7)/A is inferable, then the jud-

gement (M >[E]Q):([E]JAF[E]r)/[E]A is also inferable for any expansion E .

The next lemma shows that each skeleton contains information about one
and only one inferable judgement, i.e. represents one and only one derivation tree
of some judgement.

Lemma 2.3. Let Q € Skeleton. Then there exist one and only one term M ,

an environment A, a type 7 and a constraint A s.t. the judgement
(M >Q):(AF7)/ A is inferable and M =term(Q).

This Lemma allows us to introduce the following functions: env(Q)=4,
type(Q) =1, constraint(Q)=A, typing(Q)=(AF 7). It is easy to present algo-
rithms of calculating functions env, type, constraint and typing .

2.3. Initial skeleton. Type inference algorithm, that will be introduced in
section 2.6, starts term typification by constructing initial skeleton of that term.

Definition 2.17. Let us fix a type variable a, and expansion variables
e,,e,e, such that e, <e <e,. The function initial:Term — Skeleton maps
terms to skeletons as follows: initial(x)=x", initial(c)=c>"",
initial (Ax.M))y=(Ax.eyinitial(M)) , initial (M, M,)) = (einitial(M,) e,initial(M,)),
where x e TermVariable, ce Constant and M ,M,,M, € Term . The range of

initial is denoted by InitialSkeleton and elements of [InitialSkeleton are called
initial skeletons.
Lemma 2.4. Let P e InitialSkeleton . Then solved(constraint(P))=w, and

Vx € TermVariable In>0 and 3é,,...,é, E-paths s.t. env(P)(x)=€a, N...Né,a,,
and no ¢, is a proper prefix of €;, i, j € {l,...,n} .

From the first part of Lemma 2.4 it is easy to see that all singular constraints,
which are a part of constraint(P), are unsolved, where P is an initial skeleton of

some term. In section 2.6 we will see, that the type inference algorithm tries to
solve some singular constraints by applying substitutions on them, and it starts
solving the process from singular constraints, which are a part of constraint(P).

Unification rules, introduced in the next section, are used to produce substitutions
for solving singular constraints.

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 3, p. 42-51. 47

2.4. Unification rules. In this section three unification rules will be
presented.
Definition 2.18. The set Type' < Type is the set of types that are constructed

without using type constants and operation — .
Definition 2.19. The function Extract, :Type' — Expansion maps types

from the set Type' to expansions as follows: Extract,(w)=w, Extractp(a)=¢,
Extract,(er)=eExtract, (), Extract.((r, Nt,))=(Extract.(r,) N Extract;(t,)),
where « € TypeVariable, e e ExpansionVariable and 7,7,,7, € Type' .

Definition 2.20. The function Extract :Type'x Type — Substitution maps
pairs of type from Type', and type to substitutions as follows: Extracts(w,7')=¢,
Extracts(a,7")y={a =1}, Extracts(er,7’)=e/Extracty(r,7"), Extracts((r; N7,),7")=
=[Extracty(t,,7")|Extracty(z;,7"), where 7' eType, ee ExpansionVariable,
a € TypeVariable and 7,7,,7, € Type'.

Definition 2.21 (unify, rule). Let K=§(el (ey7y = €,7)) =(e,7, = a,)) be a
singular constraint, where 7, € Type' and 7,7, € Type. Then the rule unify, is
applicable to A, and the result of this application is the following substitu-
tion: o=é/{a,=[0']r,,¢ =1{¢, =0'},e, =E'}, where E'=Extract,(r,) and
o'=Extract(7,,7,).

The application of the rule unify, is written as AP 5o

Now let us explain the meaning of the rule unify,. Let ((Ax.M,(M,)) be a
subterm of some term M , where xeTermVariable and M,,M, € Term. The
initial skeleton of that subterm will be (e, (Ax.e,B)e,P,)™, where P=initial(M,)
and P,=initial(M,) . The part of constraint(initial(M)) that corresponds the initial
skeleton of subterm mentioned above will be é(e(e,z, > €,7,) =(e,7, > a,)),
where 7, corresponds to the type of M, (r,=type(F)), 7, corresponds to the type
of M, (r,=type(P,)) and 7, corresponds to the type of x in term M,
(zp=env(R)(x)) . Before applying substitution created by the rule unify, , the type
a, is associated with any free occurrence of variable x in the term M, . After
applying substitution, all that q, type variables will be replaced with the type 7,
(this replacement is done by the substitution created by the function Extractg), and
the type of x in term M, will be changed. The same type is obtained, when
applying substitution created by the function Extract, to the type r, (it makes as
many copies of type 7, as there are free occurrences of variable x in term M,). It
is easy to see that the process described above is very similar to the one step S -
reduction. Next two lemmas show the exact correspondence of the rule unify,

with £ -reduction.
Lemma 2.5 (correspondence with [-reduction). Let M €Term and

48 Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 3, p. 42-51.

P=initial(M) . 1f constraint(P)=KmA', where A is a singular constraint, to

which the rule unify, is applicable and ZLM)G, then IM'eTerm s.t.

constraint(P)=[c]A", env(P')=[clenv(P), type(P")=[cltype(P) and M —, M’,
where P'=initial(M').

Lemma 2.6 (correspondence with [} -reduction). Let M,M'eTerm,
P=initial(M) and P'=initial(M').1f M —, M', then JA singular constraint s.t.

constraint(P)=ZﬁA' the rule unify; is applicable to A and A—"s o,

constraint(P")=[c]A", env(P") = [o]env(P) and type(P") =[ctype(P).
Definition 2.22 (unify rule). Let Z=E(ela0ﬁ(ezr—>a0)) be a singular
constraint, where 7eType. Then the rule unify, is applicable to A,

and the result of application is the following substitution:
o=¢é/{e =1{a, =(e,7 > a,),e =eecE, e, =ee&}}.

The application of the rule unify, is written as A—“%x 55 |

Now let us explain the meaning of the rule unmify . Let (M,M,) be a

subterm of some term M , where M,,M, € Term . During the work of the type
inference algorithm the corresponding skeleton of that subterm can be (¢, Be,P,)™ ,
where B, P, € Skeleton and type(F,) = a, . The singular constraint corresponding to
the skeleton mentioned above is é(ea, =(e,7 = a,)), where 7 corresponds to the
type of M,, and q, corresponds to the type of M, in the current stage of the work
of type inference algorithm. After applying substitution o the type of M, will be
replaced with (e,r —a,), and the skeleton mentioned above will have the
following form: (Pe,P,)™ , where type(By=(e,z — a,) .
Definition 2.23 (unify,rule). Let X=§(elro = (e, = a,)) be a singular const-
raint, where 7, € CType and r € Type. Then the rule unify, is applicable to A
1.If 7y=s or t#s and 7 #aq,, where s e TypeConstant , then application
of the rule unify, fails;
2. If 7,=(s > ') and 7=s, where s e TypeConstant and 7' e CType, then
the result of applying the rule unify, is
o=¢/{a, =7",¢ ={a, =ea,e =¢ec, e =eecte ={a, =ed,,6 =6¢s,e = el
3. If 7,=(s > ') and 7=q,, where s € TypeConstant and 7' e CType, then
the result of applying the rule unify, is
o=é/{a, =7',¢ ={a, =ea,,e =eec,e, =ee,E},e, ={a, =5,6 =eecE,e =e,eE}).
In cases 2 and 3 application of the rule unify, is written as Al s o
Now let us explain the meaning of the rule unify.. Let (M,M,) be a
subterm of some term M , where M,,M, € Term . During the work of the type

inference algorithm the corresponding skeleton of that subterm can be (¢ Be,P,)™ ,

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 3, p. 42-51. 49

where F,P, € Skeleton and type(F)=1,€CIype. The singular constraint
corresponding the skeleton mentioned above will be é(er, =(e,r — q,)), where
7 corresponds to the type of M,, and 7, corresponds to the type of M, in the

current stage of work of the type inference algorithm. After applying substitution
o the type of (M,M,) will be replaced with 7', and the type of M, will be

replaced with s, if needed, and skeleton mentioned above will have the following
form: (PR, where type(P))=(s — ') and type(P})=s .
Next lemma shows, that the substitution created by the rule unify,, unify,

or unify,. solves the corresponding singular constraint.

Lemma 2.7. Let A be a singular constraint, to which the rule uniﬁ/y is

applicable and A , wWhere y e { ﬁ,x,c} . Then [O']Z is solved.

Let us now consider singular constraints that are a part of constraint
corresponding to some initial skeleton. Next lemma shows, that one and only one
unificitation rule is applicable to each of that singular constraints.

Lemma 2.8. Let M € Term, P=initial(M) and constraint(P)=Z1 AN,
n>1, where A is a singular constraint, i=1,...,n. Then one and only one rule
from rules unify;, unify, and unify, is applicable to each Ai,i=1,...n.

2.5. Unification algorithm. The unification algorithm tries to solve the given
constraint that initially corresponds to some initial skeleton. It is called from the
type inference algorithm and in fact is does the main work of type inference.

Definition 2.24. Let A=K1 ﬁ...mgn € Constraint , n>1, where Al,...,gn
are singular constraints and E —Path(K,-) zE —Path(g i), i,j=l,...,n. Then
leftmost/outermost constraint of A, written as LO(A), is a singular constraint from
Zl,...,Zn that has the least E-path, i.e. LO(A)=Zk, where ke{l,...,n} and
E — Path(Av) < E — Path(Ai) Viell,...,n}\{k} .

Definition 2.25. Let A=A ... An € Constraint, n>1, where Kl,...,gn
are singular constraints and E —Path(K,-) zE —Path(g i), i,j=l,...,n. Then
rightmost/innermost constraint of A, written as RI(A), is a singular constraint
from Kl,...,Zn that has the greatest E-path, i.e. RI(A) = A , where ke{l,...,n}
and E — Path(Ai) < E — Path(Ax) Vie{l,...,n\{k} .

Let us explain the meaning of LO(A) and RI(A). Looking at the type

inference rules, we can say that a new singular constraint is added to the constraint
part of skeleton only after applying rule [APP]. Hence each singular constraint
corresponds to one subterm of the form (M, M,), where M,,M, € Term . Let us

mention without proving that LO(A) corresponds to the leftmost, outermost
subterm of the form (M,M,) and RI(A) corresponds to the rightmost, innermost
subterm of the form (M,M,).

50 Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 3, p. 42-51.

Definition 2.26. Let A=A ...\ Ay e Constraint, n>1, where Zl,...,Zn
are singular constraints, /={ij, 1<i<n, and rule unify, is applicable to Z,-}. Then
Jfilter (A)=ﬂiE IKi (we suppose that filtery;(A) = for I=0).

Algorithm of unification(Unify).

Input: constraint A such that solved(A)=w .

Output: either returns the substitution that solves constraint or fails, or never
returns.
1. If A=w, then return ¢ .

2. If filters(A)# o, then LO(filter, (A))Lfy”)o and returns
[Unify(unsolved ([o]A))]o .

3. If the rule unify, is applicable to RI(A), then R/ (A)Lfy”)a and
returns [Unify(unsolved([c]A))]o .

4. If the rule unify, is applicable to RI(A) and this application doesn’t fail,

then RI(A)—=22 5 and returns [Unify(unsolved (c]A))]o , else fail.

Lemma 2.9 (correctness of the unification algorithm). Let M €Term and
A=constraint(initial(M)) . Then if Unify(A)=o0o, [o]A is solved.

It is easy to see that the unification algorithm first tries to solve singular
constraints, to which the rule unify; is applicable. It means that during his work
the unification algorithm does implicit £ -reductions in initial term until reducing
the initial term to A -normal form, which happens when the unification algorithm
first time arrives in point 3 or ends his work at point 1.

Lemma 2.10. Let M eTerm, P =initial(M), M —,M'e f—NF and
A=constraint(P) . Then for input A the unification algorithm does a finite number
of recursive calles from point 2 and tries to return the following:

[Unify(A)][o,,]...[0,]0,, where o,...,0, are created by the rule unify, during
the work of the algorithm and A’ = constraint(initial(M")).

Remark 2.2. It is very important that in point 2 the unification algorithm
applies the rule unify, to LO(filtery(A)) . This choice ensures that in each step of
the implicit # -reduction the unification algorithm will treat the leftmost, outermost
f -redex. It is known that in this case £ -normal form is reachable, if it exists.

Lemma 2.11. Let M eTerm, P=initial(M), A=constraint(P) and M
hasn't a f -normal form. Then for input A the unification algorithm will infinitely

call himself recursively in point 2 and will never return.
Now let us consider the situation, when the term has a £ -normal form. In

this case we have no singular constraint, to which the rule unify, is applicable, and
the unification algorithm tries to solve singular constraints, to which the rule unify,

or rule unify, is applicable. It is important that in each step of work the unification
algorithm tries to solve the singular constraint R/(A). This choice ensures that

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 3, p. 42-51. 51

during the next recursive calls of unification algorithm the rule unify_ or the rule

unify, will be applicable to each singular constraint.
Lemma 2.12. Let M € Term , P=initial(M), A=constraint(P) and M € [—

— NF . Then for input A the unification algorithm does a finite number of recursive
calls from point 3 or 4, and succeeds in point 1 or failed in point 4, because the
application of the rule unify, was failed.

2.6. Type inference algorithm. Now let us present the type inference
algorithm.

Type inference algorithm(Typify).

Input: term M .

Output: either returns the typing of M or fails, or never returns.

1. P=initial(M) . 2. o=Unify(constraint(P)) . 3. Return ((o]env(P) [o ltype(P)).

Theorem 2.1 (correctness of the Typify algorithm).

Let M €Term . Then if Typify(M)=(AF 1), then (AF7) is the typing of

term M .

Received 06.04.2009

REFERENCES

1. Carlier S,, Wells J.B. Type Inference with Expansion Variables and Intersection Types in System
E and an Exact Correspondence with S-eduction. In Proc. 6th Int'l Conf. Principles & Practice
Declarative Programming, 2004.

2. Milner R. Journal of Computer and System Sciences, 1978, Ne 17, p. 348-375.

3. Wells J.B. The Essence of Principal Typings. In Proc. 29th Int'l Coll. Automata, Languages and
Programming. Springer-Verlag, 2002, v. 2380 of LNCS.

4. Jim T. What are Principal Typings and What are They Good for? In Conf. Rec. POPL '96: 23rd
ACM Symp. Princ. of Prog. Langs., 1996.

5. Carlier S, Polakow J., Wells J.B., Kfoury A.J. System E: Expansion Variables for Flexible
Typing with Linear and Non-linear Types and Intersection Types. In Programming Languages &
Systems, 13th European Symp. Programming. Springer-Verlag, 2004, v. 2986 of LNCS.

6. Barendregt H.P. The Lambda Calculus: Its Syntax and Semantics. Amsterdam, North Holand,
1981.

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 3, p. 42-51.

A -phputph mhywjht Yonkjunnipput dwuhi: 1

Uppiwwnwbpnid ghunnwpyynud Eo wnjhunpd A -phpdtpp, npnugnd sw
hubnpdughw thnthnpwlubitiph whybph dwuhtt: Upjowwnwiph byuwnul k
puyuybty wipuhuh phpdbph whwyuytwgiwb - wignphpup [1] wnhwbph
hwunwwnnitubph b pEpdiph hwunwnmutbph qunutwpubph tEpdnisdudp:

O THIIOBOI KOPPEKTHOCTH MOMUMOPPHBIX A -TepMmoB. 1

B pabote paccmarpuBaroTcss noauMopQHbIe A-TepMbl, B KOTOPBIX OTCYT-
cTByeT mMH(pOpMaIuUs O TUIAX NepeMeHHbIX. Llenb maHoil paboOThl — PaCHIMPUTH
JITOPUTM TUIHU3ALNUA TaKUX TepMOB [1] BBelIeHHEM MOHSATHI KOHCTAHT THIIOB U
KOHCTaHT TEPMOB.

