
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2009, № 3, p. 42–51

I n f o r m a t i c s

ON THE TYPE CORRECTNESS OF POLYMORPHIC λ -TERMS. 1

A. H. ARAKELYAN∗

Chair of Programming and Information Thechnologies, YSU

In this paper polymorphic lambda terms are considered, where no type
information is provided for the variables. The aim of this work is to extend the
algorithm of typification [1] of such terms introducing type constants and term
constants.

Keywords: type, term, constraint, skeleton, expansion, typing.

1. Introduction. Types are used in programming languages to analyze

programs without executing them, for purposes such as detecting programming
errors earlier, for doing optimizations etc. In some programming languages no
explicit type information is provided by the programmer, hence some system of
type inference is required to recover the lost information and do compile time type
checking. One of such type inference systems is the well known Hindley/Milner
system [2], used in languages such as Haskell, SML, OCaml etc. Important
property of type systems is the property of principal typings [3, 4], which allows
the compiler to do compositional analysis, i.e. analysis of modules in absence of
information about other modules [3, 4]. Unfortunately Hindley/Milner system
doesn't support the property of principal typings [3]. In this paper we consider a
type inference system, called System E [1, 5]. In section 2 an extended version of
System E is presented, which adds type constants and term constants to the original
System E.

2. Definitions Used and Previous Results.
2.1. Definitions used. Let TypeVariable be a countable set of type

variables, TypeConstant be a finite set of built-in types, TermVariable be a
countable set of term variables, Constant be a countable set of constants and
(,ExpansionVariable) be a countable totally ordered set of expansion variables.

Definition 2.1. The set of types Type is defined as follows:
1. Typeω∈ ; 2. If TypeVariableα ∈ , then Typeα ∈ ; 3. If s TypeConstant∈ ,

then s Type∈ ; 4. If e ExpansionVariable∈ and Typeτ ∈ , then e Typeτ ∈ ;
5. If 1 2, Typeτ τ ∈ , then 1 2() Typeτ τ→ ∈ and 1 2() Typeτ τ∩ ∈ .

The set of expansions Expansion is defined as follows:

∗ E-mail: ara_arakelyan@yahoo.com

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, № 3, p. 42–51.

43

1. Expansionω∈ ; 2. If σ is a substitution (we will define substitutions
later), then Expansionσ ∈ ; 3. If e ExpansionVariable∈ and E Expansion∈ , then
eE Expansion∈ ; 4. If 1 2,E E Expansion∈ , then 1 2()E E Expansion∩ ∈ .

The set of terms Term is defined as follows:
1. If x TermVariable∈ , then x Term∈ ; 2. If c Constant∈ , then c Term∈ ;

3. If x TermVariable∈ and M ∈Term, then (.)x Mλ ∈Term; 4. If (.)x Mλ ∈Term,
then 1 2()M M Term∈ .

The set of constraints Constraint is defined as follows:
1. Constraintω∈ ; 2. If 1 2, Typeτ τ ∈ , then 1 2() Constraintτ τ= ∈� ;

3. If e ExpansionVariable∈ and ConstraintΔ∈ , then e ConstraintΔ∈ ;
4. If 1 2, ConstraintΔ Δ ∈ , then 1 2() ConstraintΔ ∩Δ ∈ .

The set of skeletons Skeleton is defined as follows:
1. If M Term∈ , then M Skeletonω ∈ ; 2. If c Constant∈ and Typeτ ∈ ,

then :c Skeletonτ ∈ ; 3. If x TermVariable∈ and Typeτ ∈ , then :x Skeletonτ ∈ ;
4. If e ExpansionVariable∈ and Q Skeleton∈ , then eQ Skeleton∈ ; 5. If x TermVariable∈
and Q Skeleton∈ , then (.)x Q Skeletonλ ∈ ; 6. If 1 2,Q Q Skeleton∈ , then

1 2()Q Q Skeleton∩ ∈ ; 7. If 1 2,Q Q Skeleton∈ and Typeτ ∈ , then :
1 2()Q Q Skeletonτ ∈ .

We assume that:
1. 1 2 3 1 2 3(()) (())T T T T T T∩ ∩ = ∩ ∩ ; 2. 1 2 2 1() ()T T T T∩ = ∩ ; 3. ()T Tω ∩ = ;

4. 1 2 1 2() ()e T T eT eT∩ = ∩ ; 5. ,e =eω where 1 2 3, ,T T T Type∈ or 1 2 3, ,T T T Constraint∈
and e ExpansionVariable∈ .

Definition 2.2. Let 1, , n TypeVariable,α α ∈… 1, , ,me e ExpansionVariable∈…

1, , ,n Typeτ τ ∈… 1, , , , 0mE E Expansion n 0 m∈ ≥ ≥… . The set of pairs

1 1{ : , , :nα τ α= =… 1 1, : , , : }n m me E e Eτ = =… is called a substitution, if the following
conditions are satisfied:

1. i ji j α α≠ ⇒ ≠ , where , 1, ,i j= n… ; 2. i ji j e e ,≠ ⇒ ≠ where , 1,i j= ,m… .
We denote by ε the empty substitution.
Definition 2.3. Let 1, , 0ne e ExpansionVariable, n∈ ≥… . Then 1 2 ne e e… is

called E-path and is denoted by eG . In case of 0n= E-path will be denoted by ε .
Definition 2.4. Let 1 1 2 ne =e e eG … and 2 1 2 me =e e e′ ′ ′G … , where , 0n m ≥ . If i∃ s.t.
min(,)1 i n m≤ ≤ and 1, ,j je =e j= i 1′ ∀ −… and i ie e′≺ (i ie e′;), then 1 2e eG G

(1 2e eG G). Else if n m≤ ()n m≥ , then 1 2e eG G (1 2e eG G).
It is easy to see that the set of E-paths with order is a totally ordered set.
Definition 2.5. A constraint Δ is singular, if it was constructed without using

operation ∩ .
Remark 2.1. Taking into account the definition of constraints, it is

easy to see that each constraint has one of the following forms:
1 1

1 1 2 1 2() ()n n
n=e eτ τ τ τΔ = ∩ ∩ =

G G…� � , 1n ≥ , or =ωΔ , i.e. each constraint is an
intersection of zero or more singular constraints.

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, № 3, p. 42–51.

44

Let us introduce the following notation: 1 2(()) =E Path e eτ τ− =
G G� .

Definition 2.6. A constraint Δ is solved, iff it is of the form
1 1 1() ()n n n=e eτ τ τ τΔ = ∩ ∩ =
G G…� � n 1≥ or =ωΔ . The unsolved part of a constraint

Δ , written ()unsolved Δ , is the smallest part of Δ such that ()=unsolved ′Δ Δ ∩Δ
and ′Δ is solved. Consequently ′Δ is the greatest solved part of a Δ , it is called
solved part of a constraint Δ and is written ()solved Δ . So each constraint is an
intersection of its solved and unsolved parts: () ().=unsolved solvedΔ Δ ∩ Δ

As we will see later, the Skeleton is an object, that contains all information
about the type inference tree of some term. We can calculate the term
corresponding to the Skeleton, using the following function.

Definition 2.7. The function term:Skeleton Term→ is defined as follows:
1. () =Mterm Mω ; 2. () =:term c cτ ; 3. :() =term x xτ ; 4. () = ()term eQ term Q ;

5. ((.)) = (. ())term x Q x term Qλ λ ; 6. :
1 2 1 2(()) = (() ())term Q Q term Q term Qτ ;

7. If 1 2() ()term Q =term Q , then 1 2 1(()) ()term Q Q =term Q∩ , else 1 2(())term Q Q∩
is undefined.

Definition 2.8. The skeleton Q is well formed, iff ()term Q is defined, i.e.
the corresponding term of skeleton exists.

Convention 2.1. Henceforth only well formed skeletons are considered.
The following two definitions define the application of expansions to types,

constraints, expansions and skeletons.
Definition 2.9. Let X Type Constraint Expansion Skeleton∈ ∪ ∪ ∪ and σ

be a substitution. Then the application of σ to X is denoted by []Xσ and is
obtained from σ and X by the following rules:

1. If :α τ σ= ∈ , then [] =σ α τ ; 2. If :α τ σ= ∉ Typeτ∀ ∈ , then [] =σ α α ;
3. []s=sσ ; 4. [] =σ ω ω ; 5. If :e E σ= ∈ , then [] []eY= E Yσ ; 6. If :e E σ= ∉

E Expansion∀ ∈ , then []eY=eYσ ; 7. 1 2 1 2[](= ([] []))σ τ τ σ τ σ τ→ → ; 8. []()1 2X X =σ ∩
([] [])1 2= X Xσ σ∩ ; 9. 1 1 1 1[]{ : , , : , : , , : }n n m me E e Eσ α τ α τ= = = = =… … 1 1{ : [, , :n]α σ τ α= =…

1 1[] : [] , ,n , e Eσ τ σ= = … 1: [] } { : { , , }m m ne E |σ α τα α α= ∪ = ∉ … and : }α τ σ= ∈ ∪

1{ : { , , }me E|e e e∪ = ∉ … , : }e E σ= ∈ ; 10. 1 2 1 2[]() = ([] [])σ τ τ σ τ σ τ= =� � ; 11. [] M M=σ ω ω ;
12. [][] ;: :x =xτ σ τσ 13. [][] ;: :c =cτ σ τσ 14. [](.) = ([]);x Q x. Qσ λ λ σ 15. :

1 2[]()Q Q =τσ
:[]

1 2([] [])= Q Q σ τσ σ , where 1 1, , , , , , ,n mTypeVariable e eα α α∈… … ,e ExpansionVariable∈
, ,c Constant s TypeConstant∈ ∈ 1, , , ,mE E E Expansion∈… 1 1 2, , , , , ,n Typeτ τ τ τ τ ∈…

, , , ,1 2Y X X Type Constraint Expansion Skeleton M Term∈ ∪ ∪ ∪ ∈ , 0,n m≥ , , ,1 2Q Q Q Skeleton∈
and []E Y will be defined now.

Definition 2.10. Let X Type Constraint Expansion Skeleton∈ ∪ ∪ ∪ and
E Expansion∈ . Then the application of E to X is denoted by []E X and is
obtained from E and X by the following rules:

1. If E=ω , then []E Y=ω , where Y Type Constraint Expansion∈ ∪ ∪ ;
2. If E=ω , then ()[] term QE Q=ω , where Q Skeleton∈ ; 3. If E=σ , then [] []E X= Xσ ,
where σ is a substitution; 4. If E=eE′ , then [] []E X=e E X′ , where

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, № 3, p. 42–51.

45

e ExpansionVariable∈ and E Expansion′∈ ; 5. If 1 2()E= E E∩ , then

1 2[] ([] [])E X= E X E X∩ , where 1 2,E E Expansion∈ .
Let us introduce the following notations:
1. { : }e/ = e eσ σ= ; 2. If 1 2 ne=e e eG … , then 1 2 ne / =e /e / /e /σ σG … , 0n ≥ ,

where 1, , ,ne e e∈… ExpansionVariable and σ is a substitution. It is easy to see
that [] []e/ eX=e Xσ σ , [] []e / eX=e Xσ σG G G , where

.X Type Constraint Expansion Skeleton∈ ∪ ∪ ∪
Lemma 2.1 (property of expansions). Let 1 2, ,E E E Expansion∈ and

X Type∈ ∪ Constraint Expansion Skeleton∪ ∪ , then 1 2 1 2[[]] [][]E E X= E E X and
[]E =Eε .

Definition 2.11. A total function :A TermVariable Type→ is called environ-
ment, if the following set is finite: {x|x TermVariable∈ and () }A x ω≠ . Environ-
ment A can be written also as a set of pairs {(, ()) | }A= x A x x TermVariable∈ .

Let us introduce the following notations:
1. [] = {(, ()) |A x y A y y TermVariableτ→ ∈ and } {(,)}y x x τ≠ ∪ ; 2. A B=∩

{((() ())) | }= x, A x B x x TermVariable∩ ∈ ; 3. {(, ()) | }eA= x eA x x TermVariable∈ ;
4. [] {([] ()) | }E A= x, E A x x TermVariable∈ ; 5. {(,) }env = x |x TermVariableω ω ∈ ,
where ,A B are environments, E Expansion∈ , e ExpansionVariable∈ ,
x TermVariable∈ and Typeτ ∈ .

Definition 2.12. The set CType Type⊂ is the set, satisfying the following
conditions:

1. If s TypeConstant∈ , then s CType∈ ; 2. If s TypeConstant∈ and
CTypeτ ∈ , then ()s CTypeτ→ ∈ .

Definition 2.13. The mapping :Constant CTypeΣ → is called a constant
table.

Convention 2.2. In order not to mention the constant table later, let us
suppose that henceforth we are using some fixed constant table.

2.2. Type inference rules.
Definition 2.14. The quintuple of term, skeleton, environment, type and

constraint, written () : () /M Q A τ Δ� , is called a judgement. The intended
meaning of judgement is that Q is a proof that M has typing ()A τ , provided
that the constraint Δ is solved.

Now let us introduce type inference rules, that are used to derive
judgements. Type inference rules are the following:

[VAR] :() : ([]) /x x env xτ
ω τ τ ω→�

, [CONST] :() : () /c c envτ
ω τ ω�

,

where = ()cτ Σ ,

[E-VAR] () : () /
() : () /

M Q A
M eQ eA e e

τ
τ

Δ
Δ

�
�

, [OMEGA]
() : () /MM envωω ω ω�

,

[ABS] () : () /
((.) (.)) : ([] (())) /

M Q A
x M x Q A x A x

τ
λ λ ω τ

Δ
→ → Δ

�
�

,

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, № 3, p. 42–51.

46

[APP] 1 1 1 1 1 2 2 2 2 2
:

1 2 1 2 1 2 1 2 1 2

() : () / and () : () /
(() ()) : () / (())

M Q A M Q A
M M Q Q A Aτ

τ τ
τ τ τ τ

Δ Δ
∩ Δ ∩Δ ∩ = →

� �
� �

,

[INT] 1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2

() : () / and () : () /
(()) : (/

M Q A M Q A
M Q Q A A

τ τ
τ τ

Δ Δ
∩ ∩ ∩ Δ ∩Δ

� �
� ())

.

Definition 2.15. The pair ()A τ of an environment and a type is called
typing of the term M , if Q Skeleton∃ ∈ and ConstraintΔ∃ ∈ s.t. judgement
() : () /M Q A τ Δ� is inferable and Δ is solved.

Definition 2.16. The pair ()A τ of an environment and a type is called a
principal typing of the term M , if ()A τ is a typing of M , and if ()A τ′ ′ is a
typing of M , then E Expansion∃ ∈ s.t. []A = E A′ and []= Eτ τ′ . In other words,
all typings of the term are obtained from principal typing through expansion.

Lemma 2.2. If the judgement () : () /M Q A τ Δ� is inferable, then the jud-
gement ([]) : ([] []) / []M E Q E A E Eτ Δ� is also inferable for any expansion E .

The next lemma shows that each skeleton contains information about one
and only one inferable judgement, i.e. represents one and only one derivation tree
of some judgement.

Lemma 2.3. Let Q Skeleton∈ . Then there exist one and only one term M ,
an environment A , a type τ and a constraint Δ s.t. the judgement
() : () /M Q A τ Δ� is inferable and ()M=term Q .

This Lemma allows us to introduce the following functions: () =env Q A ,
() =type Q τ , ()constraint Q =Δ , () = ()typing Q A τ . It is easy to present algo-

rithms of calculating functions env , type , constraint and typing .
2.3. Initial skeleton. Type inference algorithm, that will be introduced in

section 2.6, starts term typification by constructing initial skeleton of that term.
Definition 2.17. Let us fix a type variable 0a and expansion variables

0 1 2, ,e e e such that 0 1 2e e e≺ ≺ . The function :initial Term Skeleton→ maps
terms to skeletons as follows: 0:() = ainitial x x , : ()() = cinitial c c Σ ,

0((.)) (. ())initial x M = x e initial Mλ λ , 1 2 1 1(()) = (()initial M M e initial M 0:
2 2()) ae initial M ,

where ,x TermVariable∈ c Constant∈ and 1 2, ,M M M Term∈ . The range of
initial is denoted by InitialSkeleton and elements of InitialSkeleton are called
initial skeletons.

Lemma 2.4. Let P InitialSkeleton∈ . Then (()) =solved constraint P ω , and
x TermVariable∀ ∈ n 0∃ ≥ and 1 , ne , e∃

G G… E-paths s.t. 1 0 0()() nenv P x =e a e a∩ ∩
G G… ,

and no ieG is a proper prefix of jeG , , { , , }i j 1 n∈ … .
From the first part of Lemma 2.4 it is easy to see that all singular constraints,

which are a part of ()constraint P , are unsolved, where P is an initial skeleton of
some term. In section 2.6 we will see, that the type inference algorithm tries to
solve some singular constraints by applying substitutions on them, and it starts
solving the process from singular constraints, which are a part of ()constraint P .
Unification rules, introduced in the next section, are used to produce substitutions
for solving singular constraints.

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, № 3, p. 42–51.

47

2.4. Unification rules. In this section three unification rules will be
presented.

Definition 2.18. The set Type Type′ ⊂ is the set of types that are constructed
without using type constants and operation .→

Definition 2.19. The function :EExtract Type Expansion′→ maps types
from the set Type′ to expansions as follows: () ,EExtract =ω ω ()EExtract =α ε ,

() (),E EExtract e =eExtractτ τ (()) (() ())E 1 2 E 1 E 2Extract = Extract Extractτ τ τ τ∩ ∩ ,
where TypeVariableα ∈ , e ExpansionVariable∈ and 1 2, , Typeτ τ τ ′∈ .

Definition 2.20. The function :SExtract Type Type Substitution′× → maps
pairs of type from Type′ , and type to substitutions as follows: (,)SExtract =ω τ ε′ ,

(,) { : }SExtract =α τ α τ′ ′= , (,) = (,)S SExtract e e/Extractτ τ τ τ′ ′ , 1 2((),)SExtract τ τ τ ′∩ =

2 1[(,)] (,)S SExtract Extractτ τ τ τ′ ′= , where ,Type e ExpansionVariableτ ′∈ ∈ ,
TypeVariableα ∈ and 1 2, , Typeτ τ τ ′∈ .

Definition 2.21 (βunify rule). Let 1 0 0 0 1 2 2 0(() ())=e e e e e aτ τ τΔ → = →
G � be a

singular constraint, where 0 Typeτ ′∈ and 1 2, Typeτ τ ∈ . Then the rule unifyβ is

applicable to Δ , and the result of this application is the following substitu-
tion: 0 1 1 0{ : [] , : { : } : }2=e / a e e ,e Eσ σ τ σ′ ′ ′= = = =

G , where 0= ()EE Extract τ′ and

0 2(,).S=Extractσ τ τ′

The application of the rule unifyβ is written as unifyβ σΔ⎯⎯⎯→ .
Now let us explain the meaning of the rule unifyβ . Let 1 2((. ())x M Mλ be a

subterm of some term M , where x TermVariable∈ and 1 2,M M Term∈ . The
initial skeleton of that subterm will be 0:

1 0 1 2 2((.)) ae x e P e Pλ , where 1 1()P=initial M
and 2 2()P =initial M . The part of (())constraint initial M that corresponds the initial
skeleton of subterm mentioned above will be 1 0 0 0 1 2 2 0(() ())e e e e e aτ τ τ→ = →

G � ,
where 1τ corresponds to the type of 1M 1 1(())=type Pτ , 2τ corresponds to the type
of 2M 2 2(())=type Pτ and 0τ corresponds to the type of x in term 1M

0 1(()())=env P xτ . Before applying substitution created by the rule unifyβ , the type

0a is associated with any free occurrence of variable x in the term 1M . After
applying substitution, all that 0a type variables will be replaced with the type 2τ
(this replacement is done by the substitution created by the function SExtract), and
the type of x in term 1M will be changed. The same type is obtained, when
applying substitution created by the function EExtract to the type 2τ (it makes as
many copies of type 2τ as there are free occurrences of variable x in term 1M). It
is easy to see that the process described above is very similar to the one step β -
reduction. Next two lemmas show the exact correspondence of the rule unifyβ
with β -reduction.

Lemma 2.5 (correspondence with β -reduction). Let M Term∈ and

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, № 3, p. 42–51.

48

()P=initial M . If () =constraint P ′Δ ∩Δ , where Δ is a singular constraint, to

which the rule unifyβ is applicable and unifyβ σΔ⎯⎯⎯→ , then M Term′∃ ∈ s.t.
() []constraint P = σ′ ′Δ , () = [] ()env P env Pσ′ , () = [] ()type P type Pσ′ and M Mβ ′→ ,

where = ()P initial M′ ′ .
Lemma 2.6 (correspondence with β -reduction). Let ,M M Term′∈ ,

()P=initial M and = ()P initial M′ ′ . If M Mβ ′→ , then ∃Δ singular constraint s.t.

() =constraint P ′Δ ∩Δ the rule unifyβ is applicable to Δ and unifyβ σΔ⎯⎯⎯→ ,
() = []constraint P σ′ ′Δ , ()env P′ = [] ()env Pσ and () = [] ()type P type Pσ′ .

Definition 2.22 (xunify rule). Let 1 0 2 0(())=e e a e aτΔ = →
G � be a singular

constraint, where Typeτ ∈ . Then the rule xunify is applicable to Δ ,
and the result of application is the following substitution:

1 0 2 0 1 1 1 2 1 2{ : { : (), : , : }}=e / e a e a e e e e e eσ τ ε ε= = → = =
G .

The application of the rule xunify is written as xunify σΔ⎯⎯⎯→ .
Now let us explain the meaning of the rule xunify . Let 1 2()M M be a

subterm of some term M , where 1 2,M M Term∈ . During the work of the type
inference algorithm the corresponding skeleton of that subterm can be 0:

1 1 2 2() ae Pe P ,
where 1 2,P P Skeleton∈ and 1 0() =type P a . The singular constraint corresponding to
the skeleton mentioned above is 1 0 2 0(())e e a e aτ= →

G � , where τ corresponds to the
type of 2M , and 0a corresponds to the type of 1M in the current stage of the work
of type inference algorithm. After applying substitution σ the type of 1M will be
replaced with 2 0()e aτ → , and the skeleton mentioned above will have the
following form: 0:

1 2 2() aPe P′ , where 1 2 0() ()type P = e aτ′ → .
Definition 2.23 (cunify rule). Let 1 0 2 0(())=e e e aτ τΔ = →

G � be a singular const-
raint, where 0 CTypeτ ∈ and Typeτ ∈ . Then the rule cunify is applicable to Δ :

1. If 0=sτ or sτ ≠ and 0aτ ≠ , where s TypeConstant∈ , then application
of the rule cunify fails;

2. If 0 ()= sτ τ ′→ and =sτ , where s TypeConstant∈ and CTypeτ ′∈ , then
the result of applying the rule cunify is

0 1 0 1 0 1 1 1 2 1 2 2 0 2 0 1 2 1 2{ : , : { : , : , : }, : { : , : , :=e/ a e a e a e e e e e e e a e a e e e eσ τ ε ε ε′= = = = = = = = =
G

2 2 }};e e ε
3. If 0 ()= sτ τ ′→ and 0=aτ , where s TypeConstant∈ and CTypeτ ′∈ , then

the result of applying the rule cunify is

0 1 0 1 0 1 1 1 2 1 2 2 0 1 2 1 2 2 2{ : , : { : , : , : }, : { : , : , : }}.=e / a e a e a e e e e e e e a s e e e e e eσ τ ε ε ε ε′= = = = = = = = =
G

In cases 2 and 3 application of the rule cunify is written as cunify σΔ⎯⎯⎯→ .
Now let us explain the meaning of the rule cunify . Let 1 2()M M be a

subterm of some term M , where 1 2,M M Term∈ . During the work of the type

inference algorithm the corresponding skeleton of that subterm can be 0:
1 1 2 2() ae Pe P ,

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, № 3, p. 42–51.

49

where 1 2,P P Skeleton∈ and 1 0() =type P CTypeτ ∈ . The singular constraint
corresponding the skeleton mentioned above will be 1 0 2 0(())e e e aτ τ= →

G � , where
τ corresponds to the type of 2M , and 0τ corresponds to the type of 1M in the
current stage of work of the type inference algorithm. After applying substitution
σ the type of 1 2()M M will be replaced with τ ′ , and the type of 2M will be
replaced with s , if needed, and skeleton mentioned above will have the following
form: :

1 2()PP τ ′′ ′ , where 1() = ()type P s τ′ ′→ and 2() =type P s′ .
Next lemma shows, that the substitution created by the rule unifyβ , xunify

or cunify solves the corresponding singular constraint.

Lemma 2.7. Let Δ be a singular constraint, to which the rule yunify is

applicable and yunify σΔ⎯⎯⎯→ , where { }, ,y x cβ∈ . Then []σ Δ is solved.
Let us now consider singular constraints that are a part of constraint

corresponding to some initial skeleton. Next lemma shows, that one and only one
unificitation rule is applicable to each of that singular constraints.

Lemma 2.8. Let M Term∈ , ()P=initial M and 1() = nconstraint P Δ ∩ ∩Δ… ,

1n ≥ , where iΔ is a singular constraint, 1, ,i= n… . Then one and only one rule
from rules , xunify unifyβ and cunify is applicable to each iΔ , = 1, ,i n… .

2.5. Unification algorithm. The unification algorithm tries to solve the given
constraint that initially corresponds to some initial skeleton. It is called from the
type inference algorithm and in fact is does the main work of type inference.

Definition 2.24. Let 1 n= ConstraintΔ Δ ∩ ∩Δ ∈… , n 1≥ , where 1 , n,Δ Δ…
are singular constraints and () ()i jE Path E Path− Δ ≠ − Δ , , 1, ,i j= n… . Then
leftmost/outermost constraint of Δ , written as ()LO Δ , is a singular constraint from

1 , n,Δ Δ… that has the least E-path, i.e. () = kLO Δ Δ , where {1, , }k n∈ … and

() ()k iE Path E Path− Δ − Δ≺ {1, , } \{ }i n k∀ ∈ … .

Definition 2.25. Let 1 n= ConstraintΔ Δ ∩ ∩Δ ∈… , 1n ≥ , where 1 , n,Δ Δ…
are singular constraints and () ()i jE Path E Path− Δ ≠ − Δ , , 1, ,i j= n… . Then
rightmost/innermost constraint of Δ , written as ()RI Δ , is a singular constraint

from 1 , n,Δ Δ… that has the greatest E-path, i.e. () = kRI Δ Δ , where {1, , }k n∈ …

and () ()i kE Path E Path− Δ − Δ≺ {1, , } \{ }i n k∀ ∈ … .
Let us explain the meaning of ()LO Δ and ()RI Δ . Looking at the type

inference rules, we can say that a new singular constraint is added to the constraint
part of skeleton only after applying rule [APP]. Hence each singular constraint
corresponds to one subterm of the form 1 2()M M , where 1 2,M M Term∈ . Let us
mention without proving that ()LO Δ corresponds to the leftmost, outermost
subterm of the form 1 2()M M and ()RI Δ corresponds to the rightmost, innermost
subterm of the form 1 2()M M .

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, № 3, p. 42–51.

50

Definition 2.26. Let 1 n= ConstraintΔ Δ ∩ ∩Δ ∈… , 1n ≥ , where 1 , n,Δ Δ…
are singular constraints, { , 1I= i| i n≤ ≤ , and rule unifyβ is applicable to }iΔ . Then

() ii Ifilter =β ∈Δ Δ∩ (we suppose that () =filterβ ωΔ for I=∅).
Algorithm of unification(Unify).
Input: constraint Δ such that () =solved ωΔ .
Output: either returns the substitution that solves constraint or fails, or never

returns.
1. If =ωΔ , then return ε .
2. If ()filterβ ωΔ ≠ , then (()) unifyLO filter β

β σΔ ⎯⎯⎯→ and returns
[(([]))]Unify unsolved σ σΔ .

3. If the rule xunify is applicable to ()RI Δ , then () unifyRI β σΔ ⎯⎯⎯→ and
returns [(([]))]Unify unsolved σ σΔ .

4. If the rule cunify is applicable to ()RI Δ and this application doesn’t fail,

then () unifyRI β σΔ ⎯⎯⎯→ and returns [(([]))]Unify unsolved σ σΔ , else fail.
Lemma 2.9 (correctness of the unification algorithm). Let M Term∈ and

(())=constraint initial MΔ . Then if () =Unify σΔ , []σ Δ is solved.
It is easy to see that the unification algorithm first tries to solve singular

constraints, to which the rule unifyβ is applicable. It means that during his work
the unification algorithm does implicit β -reductions in initial term until reducing
the initial term to β -normal form, which happens when the unification algorithm
first time arrives in point 3 or ends his work at point 1.

Lemma 2.10. Let M Term∈ , = ()P initial M , M M NFβ β′∈ − and
()=constraint PΔ . Then for input Δ the unification algorithm does a finite number

of recursive calles from point 2 and tries to return the following:
2 1[()][] []mUnify σ σ σ′Δ … , where 1 , m,σ σ… are created by the rule unifyβ during

the work of the algorithm and = (())constraint initial M′ ′Δ .
Remark 2.2. It is very important that in point 2 the unification algorithm

applies the rule unifyβ to (())LO filterβ Δ . This choice ensures that in each step of
the implicit β -reduction the unification algorithm will treat the leftmost, outermost
β -redex. It is known that in this case β -normal form is reachable, if it exists.

Lemma 2.11. Let M Term∈ , ()P=initial M , ()=constraint PΔ and M
hasn't a β -normal form. Then for input Δ the unification algorithm will infinitely
call himself recursively in point 2 and will never return.

Now let us consider the situation, when the term has a β -normal form. In
this case we have no singular constraint, to which the rule unifyβ is applicable, and

the unification algorithm tries to solve singular constraints, to which the rule xunify
or rule cunify is applicable. It is important that in each step of work the unification
algorithm tries to solve the singular constraint ()RI Δ . This choice ensures that

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, № 3, p. 42–51.

51

during the next recursive calls of unification algorithm the rule xunify or the rule

cunify will be applicable to each singular constraint.
Lemma 2.12. Let M Term∈ , ()P=initial M , ()=constraint PΔ and M β∈ –

– NF . Then for input Δ the unification algorithm does a finite number of recursive
calls from point 3 or 4, and succeeds in point 1 or failed in point 4, because the
application of the rule cunify was failed.

2.6. Type inference algorithm. Now let us present the type inference
algorithm.

Type inference algorithm(Typify).
Input: term M .
Output: either returns the typing of M or fails, or never returns.
1. ()P=initial M . 2. (())=Unify constraint Pσ . 3. Return ([] () [] ())env P type Pσ σ .
T h e o r e m 2 . 1 (correctness of the Typify algorithm).
Let M Term∈ . Then if () = ()Typify M A τ , then ()A τ is the typing of

term M .

Received 06.04.2009

R E F E R E N C E S

1. Carlier S., Wells J.B. Type Inference with Expansion Variables and Intersection Types in System

E and an Exact Correspondence with β-eduction. In Proc. 6th Int'l Conf. Principles & Practice
Declarative Programming, 2004.

2. Milner R. Journal of Computer and System Sciences, 1978, № 17, p. 348–375.
3. Wells J.B. The Essence of Principal Typings. In Proc. 29th Int'l Coll. Automata, Languages and

Programming. Springer-Verlag, 2002, v. 2380 of LNCS.
4. Jim T. What are Principal Typings and What are They Good for? In Conf. Rec. POPL '96: 23rd

ACM Symp. Princ. of Prog. Langs., 1996.
5. Carlier S., Polakow J., Wells J.B., Kfoury A.J. System E: Expansion Variables for Flexible

Typing with Linear and Non-linear Types and Intersection Types. In Programming Languages &
Systems, 13th European Symp. Programming. Springer-Verlag, 2004, v. 2986 of LNCS.

6. Barendregt H.P. The Lambda Calculus: Its Syntax and Semantics. Amsterdam, North Holand,
1981.

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, № 3, p. 42–51.

52

λ -թերմերի տիպային կոռեկտության մասին: 1

Աշխատանքում դիտարկվում են պոլիմորֆ λ -թերմերը, որոնցում չկա
ինֆորմացիա փոփոխականների տիպերի մասին: Աշխատանքի նպատակն է
ընդլայնել այդպիսի թերմերի տիպայնացման ալգորիթմը [1] տիպերի
հաստատունների և թերմերի հաստատունների գաղափարների ներմուծմամբ:

О типовой корректности полиморфных λ -термов. 1

В работе рассматриваются полиморфные λ -термы, в которых отсут-

ствует информация о типах переменных. Цель даной работы – расширить
алгоритм типизации таких термов [1] введением понятий констант типов и
констант термов.

